Merge and Performance Improvements

To-and-Fro Merging

version Live#Tl}

San Francisco, CA - Greemwich, CF<%n I

J Foad | WANdisco | 2012



Introduction

The “reintegrate” option

N
¢
"re.‘i*\(q‘ roR

J Foad | WANdisco | 2012 2



Introduction

The symmetric merge

(’ff;u‘\‘&

J Foad | WANdisco | 2012 3



Introduction

Outline

© © 0 © O

J Foad | WANdisco | 2012 4



Sync & Reintegrate
©0000000

The Feature Branch Pattern

Outline

Qo

o The Feature Branch Pattern

J Foad | WANdisco | 2012 5



Sync & Reintegrate

0®000000
The Feature Branch Pattern

Feature Branch

Trunk

merge

Dey

J Foad | WANdisco | 2012 6



Sync & Reintegrate
00800000

The Feature Branch Pattern

Feature Branch with Sync

N
¢
"re.‘i*\(q‘ roR

J Foad | WANdisco | 2012 7



Sync & Reintegrate

000e®0000
The Feature Branch Pattern

Release Branch

Rel _5-5 ”gj/\c" ?

J Foad | WANdisco | 2012 8



Sync & Reintegrate

0000®000
The Feature Branch Pattern

Other Patterns

Teunk

merge

Dav

J Foad | WANdisco | 2012 9



Sync & Reintegrate
00000000

The Feature Branch Pattern

Other Patterns

Trunk
merge
/
/_,.__&—Q-—Q——‘
N

Dav

10

J Foad | WANdisco | 2012



Sync & Reintegrate

0000®000
The Feature Branch Pattern

Other Patterns

Teunk

merge

J Foad | WANdisco | 2012

Rl 55 )

R ek !

11



Sync & Reintegrate
00000000

The Feature Branch Pattern

J Foad | WANdisco | 2012 12



Introduction Implementation

Diff & Apply

diff

J Foad | WANdisco | 2012

g



Sync & Reintegrate
00000000

The Feature Branch Pattern

Merge Which Changes?

J Foad | WANdisco | 2012 14



Introduction Sync & Reintegrate Why Symmetric

Subsystems

|
what changes
are needed?

|

diff & apply

J Foad | WANdisco | 2012 15



Sync & Reintegrate
00000

Why Sync & Reintegrate?

Outline

Qo

o Why Sync & Reintegrate?

J Foad | WANdisco | 2012 16



Sync & Reintegrate
0®000

Why Sync & Reintegrate?

Sync & Reintegrate

J Foad | WANdisco | 2012 17



Sync & Reintegrate
00000

Why Sync & Reintegrate?

How Sync Works

A (=)
: Sync
’ ©

Youngest Common Ancestor
all changes on source
target's mergeinfo

J Foad | WANdisco | 2012 18



Sync & Reintegrate
00000

Why Sync & Reintegrate?

How Sync Works

A (=)
: Sync
’ ©

Youngest Common Ancestor 0]
all changes on source Al, A2
target's mergeinfo nil

J Foad | WANdisco | 2012 19



Sync & Reintegrate

00@00
Why Sync & Reintegrate?

How Sync Works

Youngest Common Ancestor 0]
all changes on source Al, A2

target's mergeinfo nil
eligible changes Al, A2
3-way base pred(Al)

3-way source-right A2
record mergeinfo “A:1-2"

J Foad | WANdisco | 2012 20



Sync & Reintegrate
00000

Why Sync & Reintegrate?

How Sync Works

INORC,

Youngest Common Ancestor 0] 0]
all changes on source Al, A2 Al, A2, A3, A4
target's mergeinfo nil A:1-2
eligible changes Al, A2
3-way base pred(Al)
3-way source-right A2
record mergeinfo “A:1-2"

J Foad | WANdisco | 2012 21



Sync & Reintegrate
00000

Why Sync & Reintegrate?

How Sync Works

C® @ @
®

merged A:3-4
Youngest Common Ancestor 0] 0]
all changes on source Al, A2 Al, A2, A3, A4
target's mergeinfo nil A:1-2

eligible changes Al, A2 A3, A4
3-way base pred(Al) pred(A3)

3-way source-right A2 A4
record mergeinfo “A:l-2" “A:3-4"

J Foad | WANdisco | 2012 22



Sync & Reintegrate
000®0

Why Sync & Reintegrate?

How Reintegrate Works

» ©
reint?
: ©

Youngest Common Ancestor
all changes on target
source's mergeinfo

J Foad | WANdisco | 2012 23



Sync & Reintegrate
000®0

Why Sync & Reintegrate?

How Reintegrate Works

» ©
reint?
: ©

Youngest Common Ancestor . o)
all changes on target . AL, A2, A3, A4
source's mergeinfo : A:1-2

J Foad | WANdisco | 2012 24



Sync & Reintegrate

000®0
Why Sync & Reintegrate?

How Reintegrate Works

. =)

ol

@ 3-way base
.

Youngest Common Ancestor . o)
all changes on target . Al, A2, A3, A4
source's mergeinfo : A:1-2
eligible changes . diff(A2, B4)
3-way base : A2
3-way source-right : B4
record mergeinfo : "B:1-4"

J Foad | WANdisco | 2012 25



Sync & Reintegrate
0000e

Why Sync & Reintegrate?

Differences

Differences

‘ ‘ sync ‘ reintegrate ‘
base node on source branch | on target branch
skip cherry-picked revs? yes no
fill in partly-merged subtrees? yes no
handle local mods in the WC? yes no

J Foad | WANdisco | 2012

26



Why Symmetric?
0

Reintegrate can be confusing

Outline

Qo

o Reintegrate can be confusing

J Foad | WANdisco | 2012 27



Why Symmetric?
oce

Reintegrate can be confusing

Confusing

£

ix

<

<

J Foad | WANdisco | 2012 28



Why Symmetric?
©0000000

Continue after reintegrate

Outline

Qo

o Continue after reintegrate

J Foad | WANdisco | 2012 29



Why Symmetric?

0®@000000

Continue after reintegrate

Continue

P-\—/‘\/L N FK

Day

J Foad | WANdisco | 2012

30



Why Symmetric?
00800000

Continue after reintegrate

Continue

o Delete

J Foad | WANdisco | 2012 31



Why Symmetric?
00800000

Continue after reintegrate

Continue

o Delete

o Keep Alive

J Foad | WANdisco | 2012 32



Why Symmetric?

000@0000

Continue after reintegrate

Continue

J Foad | WANdisco | 2012 33



Why Symmetric?

000@0000

Continue after reintegrate

Continue

J Foad | WANdisco | 2012 34



Why Symmetric?
00008000

Continue after reintegrate

Delete & re-branch

Dev '
M ddefe

J Foad | WANdisco | 2012 35



Why Symmetric?
00008000

Continue after reintegrate

Delete & re-branch

Dev '
M ddefe

J Foad | WANdisco | 2012 36



Why Symmetric?

[eleelele] Jlole}

Continue after reintegrate

Keep Alive

am—

J Foad | WANdisco | 2012

37



Why Symmetric?

0000000
Continue after reintegrate
Keep Alive
3 & ! &
=n = & >
‘{ .
P
/
| %
S ; — ¥ -
v A
e,
P!
55

o Awkward extra step

J Foad | WANdisco | 2012

38



Why Symmetric?
0000000

Continue after reintegrate

Keep Alive

— — @ I
eord
‘1@{7(
o Awkward extra step
o Doesn’t work properly, in general
39

J Foad | WANdisco | 2012



Why Symmetric?
00000080

Continue after reintegrate

Keep Alive

o R

e

J Foad | WANdisco | 2012 40



Continue after reintegrate

Why Symmetric?
0000000e

Keep-alive problem

J Foad | WANdisco | 2012

& Y
8
- i
P S
esd oy
.«1&\_7 5.

41



Why Symmetric?
®000

To-and-Fro Merging

Outline

o To-and-Fro Merging

J Foad | WANdisco | 2012 42



Why Symmetric?
o®00

To-and-Fro Merging

Merge the same way with sync

J Foad | WANdisco | 2012 43



Why Symmetric?
o®00

To-and-Fro Merging

Merge the same way with sync

J Foad | WANdisco | 2012 44



Why Symmetric?
coeo

To-and-Fro Merging

Merge the opposite way with reintegrate

J Foad | WANdisco | 2012 45



Why Symmetric?
coeo

To-and-Fro Merging
Merge the opposite way with reintegrate

r

/

§
|
H
i
|

¥
i

J Foad | WANdisco | 2012

46



Why Symmetric?
ocooe

To-and-Fro Merging

Surprise!
To-and-Fro Already Works

o Same direction again

J Foad | WANdisco | 2012 47



Why Symmetric?
ocooe

To-and-Fro Merging

Surprise!
To-and-Fro Already Works

o Same direction again

o sync

J Foad | WANdisco | 2012 48



Why Symmetric?
ocooe

To-and-Fro Merging
Surprise!
To-and-Fro Already Works

o Same direction again
o sync

o Change direction

J Foad | WANdisco | 2012 49



Why Symmetric?
ocooe

To-and-Fro Merging
Surprise!
To-and-Fro Already Works

o Same direction again
o sync
o Change direction

o reintegrate

J Foad | WANdisco | 2012 50



Implementation
®000

Symmetric Algorithm

Outline

o

o Symmetric Algorithm

J Foad | WANdisco | 2012 51



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

J Foad | WANdisco | 2012 52



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base
o Find the latest rev of A synced to B and of B synced to A.

J Foad | WANdisco | 2012 53



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

J Foad | WANdisco | 2012 54



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

J Foad | WANdisco | 2012 55



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...
o ldentify cherry-picks.

J Foad | WANdisco | 2012 56



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

o ldentify cherry-picks.
o Break into 3-way merges, skipping the cherry-picks.

J Foad | WANdisco | 2012 57



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

o ldentify cherry-picks.
o Break into 3-way merges, skipping the cherry-picks.
o Perform the 3-way merges and mergeinfo addition.

J Foad | WANdisco | 2012 58



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

o ldentify cherry-picks.
o Break into 3-way merges, skipping the cherry-picks.
o Perform the 3-way merges and mergeinfo addition.

o but currently...

J Foad | WANdisco | 2012 59



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

o ldentify cherry-picks.
o Break into 3-way merges, skipping the cherry-picks.
o Perform the 3-way merges and mergeinfo addition.

o but currently...

o Run “sync” if base on source

J Foad | WANdisco | 2012 60



Implementation
000

Symmetric Algorithm

Algorithm

o Find the best base

o Find the latest rev of A synced to B and of B synced to A.
o Choose the more recent base.

o Then, ideally...

o ldentify cherry-picks.
o Break into 3-way merges, skipping the cherry-picks.
o Perform the 3-way merges and mergeinfo addition.

o but currently...

o Run “sync” if base on source
o Run “reintegrate” if base on target

J Foad | WANdisco | 2012 61



Implementation
feYe] Yo}

Symmetric Algorithm

Limitations

o not yet symmetric inside

o limitations NOT symmetric
o results are symmetric

o change-direction merges

no cherry-picked revisions

no subtree-specific mergeinfo
no local mods in WC

no sparse WC

© 06 0 o

o in line with usage & best practice

J Foad | WANdisco | 2012 62



Implementation
oooe

Symmetric Algorithm

Sync before reintegrating

Clean
Merge

Resolve

waﬂ(gt;

J Foad | WANdisco | 2012 63



Results
©00000

Results

Outline

Q

o Results

J Foad | WANdisco | 2012 64



Introduction ¢ Rei /hy Symmetric Implementation Results Next Summary

[e] Jlele]ele]

Leave out —reintegrate

+ svn merge --reintegrate ~/B A # v1.7

--- Merging differences between repository URLs into ’A’:

A A/pickle

--- Recording mergeinfo for merge between repository URLs into
)A’:

U A

+ svn merge ~/B A # v1.8

--- Merging differences between repository URLs into ’A’:

A A/pickle

--- Recording mergeinfo for merge between repository URLs into
7A’:

U A

J Foad | WANdisco | 2012 65



Results
00®000

Results

Use the same merge command

(’ff;u‘\‘&

J Foad | WANdisco | 2012 66



Results Next Summary
000®00 )00

Implementation

Introduction

On-line Help for svn merge

$ svn help merge # v1.7
merge: Merge changes into a working copy.

usage:
1. merge SOURCE[QREV] [TARGET_WCPATH]
(the ‘“‘sync’ merge)
2. merge [-c M[,N...] | -r N:M ...] SOURCE...
(the ‘“‘cherry-pick’ merge)
3. merge --reintegrate SOURCE[QREV] [TARGET_WCPATH]
(the “‘reintegrate’ merge)
4. merge SOURCE1[ON] SOURCE2[@M]
(the ““2-URL’’ merge)

J Foad | WANdisco | 2012 67



Introduction

Implementation Results Next

Summary
000®00

On-line Help for svn merge

$ svn help merge # v1.8
merge: Merge changes into a working copy.
usage:
1. merge SOURCE[QREV] [TARGET_WCPATH]
(the ‘‘automatic’’ merge)
2. merge [-c M[,N...] | -r N:M
(the ‘“‘cherry-pick’ merge)
3. merge SOURCE1[ON] SOURCE2[@M]
(the ““2-URL’’ merge)

...] SOURCE...

J Foad | WANdisco | 2012 68



Results

[e]eele] lo]

Results
Continue after reintegrating

Trunk e Té"
|
: \ i
| i 5
| \ H
| \ |
\
i
1
Dey o &% e 5 - —-

J Foad | WANdisco | 2012

69



Results
[elelelelel )

Results

Usability tweaks

Catch source/target mismatch

o source unrelated to target
o source same as target

o source is a subtree of target (or vice-versa)

J Foad | WANdisco | 2012 70



Next
©000

The Next Step

Outline

Qo

o The Next Step

J Foad | WANdisco | 2012 71



Next
0®00

The Next Step

History

o 1.0 Diff & Apply

J Foad | WANdisco | 2012 72



Next
0®00

The Next Step

History

o 1.0 Diff & Apply
o 1.5 Merge Tracking

J Foad | WANdisco | 2012 73



Next
0®00

The Next Step

History

o 1.0 Diff & Apply
o 1.5 Merge Tracking
o 1.5 Reintegrate

J Foad | WANdisco | 2012 74



Next
0®00

The Next Step

History

1.0 Diff & Apply
1.5 Merge Tracking
1.5 Reintegrate

© © o o

1.8 Symmetric

J Foad | WANdisco | 2012 75



Next
0®00

The Next Step

History

1.0 Diff & Apply
1.5 Merge Tracking
1.5 Reintegrate

1.8 Symmetric

© © 0 o o

Next step

J Foad | WANdisco | 2012 76



Next
fele] 1o}

The Next Step

Rename Tracking Design

o Redesign

o assume we'll be able to tell merge algo which src node
matches which tgt node

J Foad | WANdisco | 2012 77



Next
fele] 1o}

The Next Step

Rename Tracking Design

o Redesign

o assume we'll be able to tell merge algo which src node
matches which tgt node

o Modularize

a merge algorithm

a provider of rename info

a module to apply changes to WC
a mergeinfo read/write module

© 06 o0 o

J Foad | WANdisco | 2012 78



The Next Step

Rename Tracking Design

o Redesign

o assume we'll be able to tell merge algo which src node
matches which tgt node

o Modularize

a merge algorithm

a provider of rename info

a module to apply changes to WC
a mergeinfo read/write module

© 06 o0 o

o Refactor

o use merge logic for merge
o use merge logic for update & switch
o move merge logic to the server?

J Foad | WANdisco | 2012 79



Next
oooe

The Next Step

3-way Tree Merge

o in: rename tracking info
o responsible for

o moves / renames
o tree conflicts

o the rest (file merging) stays the same

J Foad | WANdisco | 2012 80



Summary

No more “—reintegrate”: it's automatic
To-and-Fro Merging

Mergeinfo summary

Sanity checks

J Foad | WANdisco | 2012 81



	Sync & Reintegrate
	The Feature Branch Pattern
	Why Sync & Reintegrate?

	Why Symmetric?
	Reintegrate can be confusing
	Continue after reintegrate
	To-and-Fro Merging

	Implementation
	Symmetric Algorithm

	Results
	Results

	Next
	The Next Step


