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‘ ‘ sync ‘ reintegrate ‘
base node on source branch | on target branch
skip cherry-picked revs? yes no
fill in partly-merged subtrees? yes no
handle local mods in the WC? yes no
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Symmetric Algorithm

Limitations

o not yet symmetric inside

o limitations NOT symmetric
o results are symmetric

o change-direction merges

no cherry-picked revisions

no subtree-specific mergeinfo
no local mods in WC

no sparse WC
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o in line with usage & best practice
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Leave out —reintegrate

+ svn merge --reintegrate ~/B A # v1.7

--- Merging differences between repository URLs into ’A’:

A A/pickle

--- Recording mergeinfo for merge between repository URLs into
)A’:

U A

+ svn merge ~/B A # v1.8

--- Merging differences between repository URLs into ’A’:

A A/pickle

--- Recording mergeinfo for merge between repository URLs into
7A’:

U A
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Implementation

Introduction

On-line Help for svn merge

$ svn help merge # v1.7
merge: Merge changes into a working copy.

usage:
1. merge SOURCE[QREV] [TARGET_WCPATH]
(the ‘“‘sync’ merge)
2. merge [-c M[,N...] | -r N:M ...] SOURCE...
(the ‘“‘cherry-pick’ merge)
3. merge --reintegrate SOURCE[QREV] [TARGET_WCPATH]
(the “‘reintegrate’ merge)
4. merge SOURCE1[ON] SOURCE2[@M]
(the ““2-URL’’ merge)
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On-line Help for svn merge

$ svn help merge # v1.8
merge: Merge changes into a working copy.
usage:
1. merge SOURCE[QREV] [TARGET_WCPATH]
(the ‘‘automatic’’ merge)
2. merge [-c M[,N...] | -r N:M
(the ‘“‘cherry-pick’ merge)
3. merge SOURCE1[ON] SOURCE2[@M]
(the ““2-URL’’ merge)

...] SOURCE...
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Results

Usability tweaks

Catch source/target mismatch

o source unrelated to target
o source same as target

o source is a subtree of target (or vice-versa)
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The Next Step

Rename Tracking Design

o Redesign

o assume we'll be able to tell merge algo which src node
matches which tgt node
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o Modularize

a merge algorithm

a provider of rename info

a module to apply changes to WC
a mergeinfo read/write module

© 06 o0 o

J Foad | WANdisco | 2012 78



The Next Step

Rename Tracking Design

o Redesign

o assume we'll be able to tell merge algo which src node
matches which tgt node

o Modularize

a merge algorithm

a provider of rename info

a module to apply changes to WC
a mergeinfo read/write module
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o Refactor

o use merge logic for merge
o use merge logic for update & switch
o move merge logic to the server?
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The Next Step

3-way Tree Merge

o in: rename tracking info
o responsible for

o moves / renames
o tree conflicts

o the rest (file merging) stays the same
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Summary

No more “—reintegrate”: it's automatic
To-and-Fro Merging

Mergeinfo summary

Sanity checks
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