
Two Improvements
to Subversion

“True” Renames

and

Merging Identical Changes

by
Julian Foad

Who Am I?

Worked for CollabNet
on Subversion's tree conflict handling

Volunteer contributor to Subversion

This is my opinion, not necessarily the opinion
of the Subversion community.

1. “True” Renames

What is the problem?

Contents

Renaming in Subversion now

What is a “true” rename?

Rename == copy + delete

svn rename OLD NEW

A NEW
D OLD

svn log v

D OLD
A /NEW (from /OLD:1)

This works OK...

svn update
find the old name

What Works

Propagate to other users

Follow history backwards

svn update

D OLD
A NEW

svn log v r1 NEW

[...]
A /OLD

What Doesn't Work

Merging In branch B

svn merge ^/A

A NEW
D OLD

svn log vq rHEAD

r6 | julianfoad | ...
Changed paths:
 M /B
 A /B/NEW (from /A/NEW:3)
 D /B/OLD

What Doesn't Work

Follow history forwards
svn diff r1:2 ^/OLD@1

not found: revision 2,
path '/OLD'

Contents

Renaming in Subversion now

What is a “true” rename?

What is a “True” Rename?

copy and delete the same item
copy from a relative path (./OLD)

at this revision
to the new path (./NEW)

delete the same item (./OLD)

the two halves are indivisible

How it Should Work

Merging In branch B

svn merge ^/A

A NEW
D OLD

svn log vq rHEAD

r5 | julianfoad | ...
Changed paths:
 M /B
 A /B/NEW (from /B/NEW@4)
 D /B/OLD

Development

info from the Working Copy
maybe in 1.7 ?

info in the Repository
possible in 1.7/1.8 ?

info used in Merging
maybe in 1.9/2.0 ?

2. Two Identical Changes

Two Identical Changes

An improvement to tree conflict handling

When we merge two identical changes
say, “delete file1” and “delete file1”

As Stephen/Neels said, 1.6 detects
conflicts you need to know about
some conflicts you wish it would resolve automati-

cally

Example 1

On a feature branch 'B':
commit ...
commit a small patch 'P1'
commit ...

Catch up from trunk:
svn merge ^/trunk
M alpha.c
 C beta.c
 ^ delete/delete

Mod alpha.c
Del beta.c

Example 1

Why the conflict?
Somebody already applied 'P1' on trunk
Maybe this happens frequently
Subversion combines two identical text changes,

so why not this tree change?

Can you resolve it?
svn resolve –accept=minefull beta.c

Can we avoid this inconvenience?
svn merge –accept=mine=full
...?

Example 2

On a feature branch 'B':
Modify 'gamma.c' to include all of 'beta.c'
Delete 'beta.c'

Catch up from trunk:
svn merge ^/trunk
M alpha.c
 C beta.c
 ^ delete/delete

Example 2

What's the difference?
Two copies of the content from 'beta.c'
Subversion doesn't know that

Why do we want a conflict? Let's say...
we rarely apply the same patch on two branches
we are versioning documents – no automatic

checks
we are using an external tool to help resolve con-

flicts

I Want

I want to select between
“Relaxed” mode:

The same change twice -> do it once
“Strict” mode:

The same change twice -> raise a conflict

Observations

Important for big trees

Subversion is “relaxed” in text conflicts

The same principle applies to double adds

Status

In v1.6 we have “strict” detection:
so we can be sure to find all tree conflicts
so other tools can help
because rename = copy + delete

To implement a choice:
UI
support in WC layer

Questions

Thank you for listening.
Of course, it is possible to do better
See tools such as Subclipse

Any questions?

	Slide 1
	Slide 2
	Title
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

